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Introduction to Feature Engineering

* Definition: Feature engineering involves creating and selecting the
most relevant features for predictive models.

* Role in Biomedical Engineering: Critical for interpreting complex
data like images, signhals, and genetic information.

* Types of Biomedical Data: Imaging, Signals, Genomics, etc.
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Feature Extraction

* Definition: Process of transforming raw data into informative
features.

* Techniques:
* Signal Processing for biomedical signals (e.g., wavelet transforms for
ECG)
* Texture Analysis for Images (e.g., GLCM for MRI)
* Dimensionality Reduction (e.g., PCA for high-dimensional data)

* Examples: Specific features extracted from ECG, MRI, and genetic
data.
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Types of Features

* Structural Features: Shape, size, and location information.

»Number of pixels (area)
»Bounding box

» Center of mass (centroid)
» Circularity

SVERS
S (g 5 "
(/[ PECSI TUDOMANYEGYETEM
G \s/ &5 UNIVERSITY OF PECS
TECOY

T oy [BAPORTO DEX



Types of Features

e Statistical Features: Mean, variance, skewness, etc.

N 1 2 3

White blood cells [no/pl] | 5600 9000 4800
Red blood cells [no/pl] 4.8x106 | 4.1x106 | 4.6x106
Platelet count [no/pl] 142,000 | 148,000 | 151,000
Hemoglobin [g/dl] 12.2 13.4 12.5
Glucose [mg/dl] 71 74 72
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Types of Features

* Temporal Features: Patterns over time (e.g., ECG signals).
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Types of Features

* Frequency-Domain Features:

Derived from signal transformations
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Feature importance analysis



Analysis of Variance (ANOVA)

Between — group variance  Yjg_q ni (X, —x)*/(K — 1)

LT (v - R ) SN -

Within — grop variance

Where:

* K: number of groups (categories of the target variable)
* N: total number of observations

* n.: hnumber of observations in the k-th group

e x:overall mean

* X} : mean of the k-th group
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Minimum Redundancy Maximum Relevance
(MRMR)

P(xi)P(y)

P(xix;)
* Redundancy: I(Xu 1) Zx EX ZX €Xj P(xl,x])log (xi)P(;j)

 MRMR Criterion:

1
MRMR = max(| |ZI(X“Y S z I(X;; ]))

X; ,XjES
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Feature selection



Wrapper Methods

Forward Feature Selection
1. Rank features based on their importance
2. Train the model on small number of features

3. lteratively add features to a model until the desired performance
Is reached
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Wrapper Methods

Backward Feature Elimination
1. Train model on all features
2. Rank features based on their importance

3. Eliminate the least important features and repeat until the
desired numer of features is reached
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Filter Methods

Correlation analysis

v

r=1
Perfect positive
correlation

v

r=0.8
Medium positive
correlation

Source: Original work by the author.
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Embedded Methods

Lasso Regression....
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Source: https://www.youtube.com/watch?v=NGfOvolMlcs

3 \A\\vxakx,&,’
~ 3 2 .
[:[F7],) PECSI TUDOMANYEGYETEM
@ \)/ &5 UNIVERSITY OF PECS
EECOS

Silesian University
of Technology

R Erasmus+

[PORTO

DEX


https://www.youtube.com/watch?v=NGf0voTMlcs

Lasso Regression....




Challenges and Considerations In
Biomedical Feature Engineering



Data Variability

* Biological differences
* Calibration

* Equipment

* Human error
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High Dimensionality & Small Sample Sizes

* Common in biomedical data, leading to overfitting risks.

4D Visualization of Neurological Biomarkers
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Source: Original work by the author; Mathworks Inc. MRI dataset; BACH: Breast Cancer Histology images.
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Interpretability

* Ensuring features are meaningful and interpretable for clinical
use.

Are McDonalds restaurants causing inflation? Are falling emissions levels impacting Kim LU S s R L
| 5.7bln Kardashian's popularity?
256 tonnes 18.000 90%
38,695 17.200
McDonalds 75%
Stores
m. 16.4
-0, Trends index %
ca
31,046
McDonalds ‘ 45%
stores Consumer Price Index h 14.800
US. annual €02
emissions 144
5.3bln 14.000 30%
202 tonnes 2006 2007 2008 2009 2010 2011

2006 200% 02 2015 2018 2010 2012 2014 2016

Source: https://medium.com/pythoneers/the-great-debate-correlation-vs-causation-explained-b17e98158760
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Case study



ECG Feature Extraction for Arrhythmia
Detection

Objective: Detect arrhythmias using ECG signal features.
Steps:

1. Preprocessing - Remove noise and artifacts

2. Feature extraction
 RRInterval (time between consecutive R-wave peaks): Indicates heart rhythm.
* P-Wave Duration: Duration of atrial depolarization.
* Frequency Analysis: Apply Fourier transform to detect frequency bands of interest.

3. Feature selection
* Use filter methods to select features that correlate with arrhythmias.
* Implement wrapper methods to test feature effectiveness in machine learning
models.

4. Classification
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Conclusion

* Summary: Reviewed feature types, extraction methods, and
selection techniques.

* Further Reading:
* Biomedical Data Science resources
* Advanced texts on feature engineering in biomedical contexts
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Feature Engineering for Machine Learning — https://towardsdatascience.com/feature-engineering
The Great Debate: Correlation vs. Causation — https://medium.com/pythoneers/the-great-
debate-correlation-vs-causation-explained-b17e98158760

Feature Selection in Python - https://machinelearningmastery.com/tips-for-effective-feature-
selection-in-machine-learning/

10. ANOVA Explained - https://www.datacamp.com/tutorial/anova-test
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