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The Term “Pattern Recognition”

is a field whose objective is to
assignh an object or event to one of
a few categories, based on
. f . .
. eatures derived to emphasize
Pattern Recognition |—§—| . .
V g commonalities. In practice,
features are often extracted from

sensory signals, such as images or
audio.

is the act of taking in raw data and
taking an action based on the
category of the pattern.
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Terminology

Image Processing,

\/ What is the difference between Image Recognition, and

Pattern Recognition?
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Pattern recognition applications

.. Character Computer-aided
Qi Computer Vision ! Recognition ——D Diagnosis

Data Mining and

Q Speech Recognition @ Knowledge E

Discovery

\NIB=

\PRUJECT

Bl Erasmus+

_T\\vlik.ylz,i

5 N )
i -\ PECSI TUDOMANYEGYETEM
% £ UNIVERSITY OF PECS

0 TS

ssenubss [WPORTO DEX



Basic Stages of Pattern Analysis

A I i
A 4 \ 4
feature feature classifier system

>  sensor —> . —> ) S - S .
generation selection design evaluation

patterns

In order to design an
7 The stages are highly - optimal pattern recognition
KJ dependent on each other. rh system, they all have to be
optimised at once.

Integration of background
knowledge into the process

Patterns are analysed at
E different levels of
may be very useful.

abstraction.
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Low-Level

Interpretation
of Patterns

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Libeck
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Input Image

High-Level

Gray Level Retina Image

Interpretation
of Patterns

> Papilla Shape - OK
Blood Vessel Width - OK

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Libeck
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Basic Stages of Pattern Analysis

& v/

Optimization of the Entire Combination of the Different Integration of Background
Processing Chain at Once Levels of Abstraction Knowledge into the Process
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Semantic Gap in Image Understanding

Semantic Gap

Semantic Semantic
Image - Image -
Interpretation Description

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Libeck

NIB=

PROJECT

ssenubss [WPORTO DEX

_T\‘\\' ‘ER“’7;,
e g 5 5
(7)) PECSI TUDOMANYEGYETEM %
) /5 UNIVERSITY OF PECS '
& TS

8 Erasmus+



Semantic Gap in Image Understanding

Medical Doctor

Semantic Semantic
Image - Image -
Interpretation Description

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Libeck
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Example for Medical Image Classification

(b)

Examples of image regions corresponding to (a) class A and (b) class B.
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Example
Descriptors for the
Image Regions

* Plot of the mean value p
and standard deviation o for a
numer of different images
originating from class A (o)
and class B (+).

e

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern J
Recognition. University: Universitat zu Libeck 'D
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Feature Vectors @ Random Vectors

Each feature vector identifies
a single pattern (object)

escriptors are calle — T
. featpLerevectorsll ‘ X _ [X1 ,X2, oo o ,Xl]

Feature vectors are treated
as random vectors
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Signal Acquisition - Stochastic Process

* Stochastic processes are processes that proceed randomly in
time.

e Rather than consider fixed random variables X, Y, etc. or even
sequences of i.i.d random variables, we consider sequences X,
X.s Xo, .... Where X, represent some random quantity at time t.

* In general, the value X, might depend on the quantity X, , at time t-
1, or even the value X, for other times s <t.
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Signal Acquisition -
Stochastic Process

Example

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Lubeck
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Learning Strategies

Supervised Learning

assumes that a set of labelled training
data is available and the classifier is
designed by exploiting this a-priori
known information.

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Lubeck
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Learning Strategies

Supervised Learning

assumes that a set of labelled training
data is available and the classifier is
designed by exploiting this a-priori
known information.

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Lubeck
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Learning Strategies

Semi-supervised Learning

applies both the labelled and unlabelled training for designing a
classification system.
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Statistical Classification - Problem Statement

Classification of an unknown pattern in the most probable of
the classes!

* Set of classes: {w,Ww,,...,Wy}

* Unknown pattern represented by its feature vector x

* Conditional probabilities: P(w;[x), 1=1,2,...,M

* Classification result: the class with the maximum conditional

probability
But how to compute the conditional probability for a particular
class?
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Probability P vs. Density p

Probability P
Is a real number describing an event belonging to the range <0,1>.

Density p
is a value of a function’ p(x) describing the distribtion of the random
variable x.

If the random variable takes only discrite values, the densities
become probabilities!

This function is often reffered as pdf — probability density function.
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Bayes Decision Theory



A Priori Probability vs. A Posteriori Probability

A priori probability — probability before classification

* How probable is a particular class w, for a pattern x before applying any
classificaion algorithm?

* Answer: P(w;)

A posteriori probability — probability after classification

* How probable is a particular class w, for a pattern x after applying any
classificaion algorithm?

* Answer: P(w;|x)
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Likelihood Density Function

Likelihood How feature vector x are distributed in a class w.?

Density
Function
Answer: p(x|w)
p(x|w;) is the likelihood function of w; with respect to
X
p(x]w;) can be trained from examples
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Two-class Problem

* Classes: {w,, W,}

e A priori probabilities: P(w,) and P(w,)

* Likelihood density functions: p(x|w,)and p(x|w,)

* Pattern to be classified: X=[Xq, Xoy oeey X,]T

e The feature vectors can take any value in the I-dimensional feature space: x=[x,, X,, ..., X"

€ R
Unknown ,
Ao
e A posteriori probabilities: P(w, |x) and P(w, |X) R
= ‘i Rk’l, PECSI TUDOMANYEGYETEM Si|e5ian Universit
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Computation of the A Posteriori Probability

Using the Bayes Rule

p(x|w;)P(w;)
p(x)

P(w;|x) = : i=12 (1)

pP(x) —density function for x
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Bayes Classification Rule (1)

Higher a posteriori probability wins

f P(w,|x) > P(w,|x), x is classified to w,
f P(w,|x) < P(w,|x), X is classified to w,
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Bayes Classification Rule (2)

Considering the Bayes Rule (Eqg. 1)

g 2eDP@.)  pe)P@s) -y s classified to W,
p(x) p(x)

g PeDP@.)  PX0)P@s) -y s () assified to w,
p(x) p(x)
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Bayes Classification Rule (3)

p(x) can be discarded, because it is the same for all
classses

It p(X|w,)P(w,) > p(x|w,)P(w,),

classified to w,

i P(X|w4)P(w,) < p(x|w,y)P(w,),
classified to w,
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Bayes Classification Rule (4)

If the a priori probabilities are equal: P(w,) = P(w,)

x is classified to w;,

X is classified to w,

We are done, since the likelihood density functions p(x|w,) and p(x|w,) are ,
assumed to have been trained from examples! =
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. po . x| w)
Classification Error

Probability

Error Probability: P, =

1
Effgop(xmz)dx"'
~ S, p(x|w;)dx
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e A priori probabilities are not equal: P(w;) # P(w2)

Classification
Error

e Feature vectors have more than one dimension: [ > 1

W= G, Iy e ,x,]"‘

Probability in
General

e General form:

Pe = P(Wl)./‘ p(x|wy)dx + P(wg)/p(xlwg)dx
R, R,

Grzegorzek Marcin & Doniec Rafat,. (2024). Pattern
Recognition. University: Universitat zu Libeck
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Pattern Recognition Quiz

1. What is Pattern Recognition?

*A. Pattern recognition is identifying patterns without using any pre-learned information.

*B. Pattern recognition is the classification of data based on previously gained knowledge or statistical information
extracted from patterns.

2. Is Speech Recognition an example of Pattern Recognition?

*A. Yes, as it involves processing raw data and classifying patterns for machine use.

*B. No, speech recognition doesn’t involve identifying or classifying patterns.

3. What is the Difference Between Classification and Clustering?

*A. Classification assigns labels based on training patterns, while clustering groups data without predefined labels.
*B. Classification and clustering are the same process, as both involve labeled data.

4. Can Binary Quantities be Used as Features?

*A. No, features can only be represented as continuous variables.

*B. Yes, features can be continuous, discrete, or binary variables.

5. How are Features Obtained?

*A. Features are randomly generated without any measurement criteria.

*B. A feature is a function of measurements that quantify significant characteristics of an object.
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Pattern Recognition Quiz with Correct Answers

1. What is Pattern Recognition?

*A. Pattern recognition is identifying patterns without using any pre-learned information.

*B. Pattern recognition is the classification of data based on previously gained knowledge or statistical information extracted from patterns.
Answer: B

2. Is Speech Recognition an example of Pattern Recognition?

*A. Yes, as it involves processing raw data and classifying patterns for machine use.

*B. No, speech recognition doesn’t involve identifying or classifying patterns.

Answer: A

3. What is the Difference Between Classification and Clustering?

*A. Classification assigns labels based on training patterns, while clustering groups data without predefined labels.
*B. Classification and clustering are the same process, as both involve labeled data.

Answer: A
4. Can Binary Quantities be Used as Feat rehi i nk O u fo r O u r
*A. No, features can only be represented s cdnt arillle

*B. Yes, features can be continuous, discrete, or binary variables.

Answer: B f
5. How are Features Obtained? a e n I O n

*A. Features are randomly generated without any measurement criteria.
*B. A feature is a function of measurements that quantify significant characteristics of an object.
Answer: B
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